Contents

Microbiology

Effect of induced prostatic infection on semen quality in the dog ... 709
 J. A. Barsanti, A. B. Caudle, W. A. Crowell, E. B. Shotts, and J. Brown
Survival of *Corynebacterium pseudotuberculosis* in axenic purulent exudate on common barnyard fomites ... 713
 John L. Augustine and Harland W. Renshaw
Pasteurella haemolytica leukotoxin: Physicochemical characteristics and susceptibility of leukotoxin to enzymatic treatment ... 716
 Yung-Fu Chang, Harland W. Renshaw, and Alan B. Richards
Inoculation of lambs with ovine adenovirus 5 (*Mastadenovirus ovit 5*) strain RTS-42 724
 Howard D. Lehmkuhl and Randall C. Cutlip
Incubation of *Pasteurella haemolytica* and *Pasteurella lipolytica* in sheep lung surfactant 727
 K. A. Brogden, R. B. Rimalr, R. C. Cutlip, and H. D. Lehmkuhl
Pasteurella multocida isolated from rabbits and swine: Serologic types and toxin production 730
 Richard B. Rimalr and Kim A. Brogden
Detection of antibody in rams with contagious epididymitis, using the enzyme-linked immunosorbent assay ... 738
 A. Lucia Cardenas and Leroy R. Maki
Detection of bovine herpesvirus-specific nucleic acids by in situ hybridization with biotinylated DNA probes ... 740
 Donna C. Dunn, Carol D. Blair, David C. Ward, and Barry J. Beaty
In vitro interference between equine herpesvirus types 1 and 2 ... 747
 S. K. Dutta, A. C. Myrup, and S. R. Thaker
Effect of recombinant DNA-derived bovine and human interferons on replication of bovine herpesvirus-1, parainfluenza-3, and respiratory syncytial viruses ... 751
 Robert W. Fulton, Lurinda J. Burge, and J. S. McCracken
Virion polypeptide specificity of immune complexes and antibodies in cats inoculated with feline infectious peritonitis virus ... 754
 Marian C. Horzinek, Joke Ederven, Herman Egberink, Helen E. L. Jacobse-Geels, Theo Niewold, and Jan Prins
Genetic stability in calves of a single strain of bluetongue virus ... 762
 N. James MacLachlan and Frederick J. Fuller
Prevalence of feline leukemia virus infection among adult cats at an animal control center: Association of viremia with phenotype and season ... 765
 John C. McMichael, Susan Stiers, and Susan Coffin
Enterotoxin activity of a *Salmonella typhimurium* of equine origin in vivo in rabbits and the effect of *Salmonella* culture lysates and cholera toxin on equine colonic mucosa in vitro ... 769
 Michael J. Murray
Seroepizootiology of types 3 and 7 adenoviruses and bovine viral diarrhea virus infections of beef cattle from birth to first parturition ... 774
 E. H. Staub, F. R. Abinanti, and G. D. Whitbeck
Experimentally induced rabies in four cats inoculated with a rabies virus isolated from a bat 777
 Charles V. Trimbarchi, Robert J. Rudd, and Melvin K. Abelseth
Survival of Corynebacterium pseudotuberculosis in axenic purulent exudate on common barnyard fomites

John L. Augustine, PhD, and Harland W. Renshaw, DVM, PhD

SUMMARY

Several inanimate surfaces (e.g., plastic, wood, and steel) and particulate fomites (e.g., wood shavings, hay, straw, and feces), common to the environment of confined small ruminants, were inoculated with Corynebacterium pseudotuberculosis in axenic purulent exudate that had been surgically removed from a naturally occurring case of caseous lymphadenitis. Each inoculated fomite was incubated at 37, 22, and 4°C, and the length of time that C. pseudotuberculosis survived was determined by isolation of bacteria from the fomite. The organism remained viable longer when caseous lymphadenitis abscess contents were mixed with particulate fomites than when spread on surfaces. Incubation at lower temperatures generally extended the survival potential of C. pseudotuberculosis. Depending on the particulate fomite and the incubation temperature, viable C. pseudotuberculosis organisms were isolated for mean periods ranging from 7 to 55 days, whereas recovery of bacteria from surfaces varied from 1 to 8 days.

Caseous lymphadenitis (CLA) of small ruminants is a chronic disease caused by Corynebacterium pseudotuberculosis.1,4,5 The disease is characterized by caseation necrosis, mainly of superficial lymph nodes and occasionally by generalized infection, that sometimes results in emaciation and death.3,5,6,8 Although C. pseudotuberculosis is capable of tissue invasion,9 available epizootiologic data indicate that contamination of superficial skin wounds is the usual mode of entrance by the microorganism into the susceptible host.3,5,10 Apparently, animals occasionally acquire the infection by ingestion or inhalation.11–13 The most common mode of transmission in sheep is contamination of superficial skin wounds caused by shearing, docking, ear cutting, tagging, and castration.3,5,6 Transmission in Angora goats, as in sheep, is thought to occur mainly by contamination of shearing wounds with purulent exudate from ruptured lymph nodes or with common barnyard fomites containing infectious microorganisms.10

The major methods of transmission in Spanish and dairy goats are thought to be by ingestion from a contaminated environment and by environmental contamination of head wounds resulting from head butting.14,15

The potential for survival of C. pseudotuberculosis outside the host has important implications for those interested in developing programs for control of CLA. Results from previous studies,14–19 using different sources of infectious microorganisms, led to conflicting conclusions about the survival potential of C. pseudotuberculosis outside the host. Whereas one study,18 using purulent exudate as the source of microorganisms indicated survival for over a year in sterile sheep feces, another study19 using cultured and washed bacteria indicated that survival periods did not exceed 1 week. The purpose of the present study was to determine the time that C. pseudotuberculosis could survive in axenic purulent exudate applied to or mixed with several common barnyard fomites.

Materials and Methods

Fomites and source of purulent exudate—Sterile inanimate surfaces (e.g., plastic petri dish, white pine wood chips, and rusty nails) and sterile particulate fomites (e.g., white pine wood shavings, goat feces, alfalfa hay, and wheat straw) were inoculated with purulent exudate, containing a pure culture of C. pseudotuberculosis. Rusty nails, white pine wood chips, white pine wood shavings, goat feces, and wheat straw were sterilized in an autoclave with steam at 121°C for 20 minutes and were vent dried for 30 minutes. The purulent material that was obtained from a surgically excised abscessed lymph node from a naturally occurring case of caprine CLA contained approximately 2 × 108 colony-forming units (CFU) of C. pseudotuberculosis/ml. To determine bacterial concentration, abscess exudate was mixed 100:1 with sterile isotonic saline solution (w/w), an aliquot of the exudate-saline mixture was sonicated for 20 s at 60% intensity5 (to aid in disrupting clumps of bacteria), and the CFU of C. pseudotuberculosis/ml were determined by making serial dilutions in saline solution and dispensing these dilutions into Columbia blood agar base7 pour plates. The plates were incubated at 37°C for 48 hours, and the number of colonies on the plates were counted to determine CFU of C. pseudotuberculosis/ml.

Recovery from contaminated barnyard fomites—Sterile plastic petri dish,7 white pine wood chip, and rusty nail surfaces were coated with a thin layer of purulent exudate, whereas the par-
ticate fomites were inoculated by mixing them with the ab-
scum contents at a 10:1 ratio (w/w) in a tabletop blender for 1
minute at high speed. Samples of the contaminated barnyard
fomites were placed in sterile plastic petri dishes, with dishes
containing each of the test samples prepared in triplicate and
incubated at 37, 22, and 4 C. At 3-hour intervals through 7 days
and at daily intervals thereafter through 67 days, 3 represent-
ative samples of the test material were removed at each period
and were examined for the presence of C pseudotuberculosis by
culture techniques. For the inoculated particulate fomites, ap-
approximately 0.1 g of a fomite-purulent exudate mixture was
added to 4 ml of brain-heart infusion broth (BHIB) in a test
tube, and this was incubated at 37 C for 24 hours before passage
onto a petri dish containing Columbia blood agar base. Plates
were incubated in an aerobic system at 37 C for 48 hours, and
isolates were identified as C pseudotuberculosis, using previ-
ously described methods. A sterile dry cotton swab was used to
scrape dried purulent exudate from the plastic petri dish
surface, and the swab was placed in a test tube with BHIB. Sim-
ilarly, contaminated rusty nails and white pine wood chips were
inserted into test tubes with BHIB. Inoculated test samples were
cultured and isolates were identified. All samples were analyzed
until no bacteria were isolated from the tested sample on 2
consecutive sampling periods.

Results

The time that C pseudotuberculosis remained viable in
axenic purulent exudate was greater when CLA abscum
contents were mixed with particulate fomites than when
spread on surfaces (Table 1). The C pseudotuberculosis
cells in purulent exudate survived on average for 27, 72,
and 99 hours on plastic petri dish surfaces at 37, 22, and
4 C, respectively. Viable bacteria were recovered from the
inoculated surfaces of wood chips from 51 hours at 37 C
to 129 hours at 4 C. Living C pseudotuberculosis cells
were recovered from inoculated rusty nail surfaces for 39
to 192 hours depending on the incubation temperature.
The etiologic agent of C pseudotuberculosis in small ruminants survived for up to 55 days at 4 C in wood shavings and alfalfa hay.
The incubation temperature did not markedly influence the length of survival in wheat straw with organisms recovered up to 19, 23, and 24 days when incubated at 37, 22, and 4 C, respectively. Unlike the situation with any of the other fomites, C pseudotuberculosis survived longer in goat feces at 22 C than at 4 C. In all other instances, incubation temperature and length of survival time for the organism were inversely related with C pseudotuberculosis surviving longest at 4 C and shortest at 37 C.

Discussion

Seemingly, C pseudotuberculosis can survive for ex-
tended periods when inoculated onto sterile fomites com-
mon to the environment of small ruminants. Previously,
speculations about the spread of C pseudotuberculosis in
small ruminant populations has been based on the prem-
ise that the organism has a relatively short life span out-
side the host. The organism was reported only able to
survive for 1 to 8 days when cultured and washed cells
were inoculated onto sterile feed, bedding, soil, and water.
In contrast to these results, the organism was able to
survive for over a year when sterile sheep feces were
inoculated with axenic purulent exudate, because pur-
ulent exudate is the presumed vehicle that is responsible
for environmental contamination. Studies using this as the inoculum, rather than washed cultured cells, should provide more useful insights about the role specific fomites may have in the transmission of the agent.

The pathogen was able to survive longer when axenic
purulent exudate was mixed with finely chopped particu-
lates such as wood shavings, straw, hay, and feces than when exposed on surfaces such as plastic, wood chips, or
nails. During the mixing procedure used in this study, the
purulent exudate was coated with the particulate matter to form small particles or micelles that may be a
major factor in bacterial survival. The formation of mi-
celles may favor retention of nutrients and moisture. The rapid loss of moisture may account for the shorter periods of survival on sterile inanimate surfaces. The consistency of purulent exudate that escapes from ruptured abscusses favors micelle formation when it is mixed with particu-
late materials. The potentially extended period of sur-
vival that occurs because of micelle formation may provide extended opportunities for infection of healthy animals.

In the present study, C pseudotuberculosis was in-
oculated onto sterile fomites, a situation markedly different from what would be expected to occur under natural con-
ditions. Although the results from this study may not be
directly applicable to circumstances occurring in the en-
vironment of small ruminants, they provide important
insights about the potential that C pseudotuberculosis has
for extended survival outside the host at different envi-
ronmental temperatures. Considered collectively, data from
this and other studies indicate that management techniques (eg, shearing, docking, castration, and dipping) may not be the only means of transmission and that purulent material containing the organism may not be the only fomite. Previous reports have recommended measures that can be adapted by producers to reduce the hazards of infection. Some measures that may prove beneficial include separation of infected animals from animals without abscusses; frequent removal and proper disposal of bedding, feed, and water which are contami-
nated with purulent exudate; cleaning and disinfection of inanimate surfaces contaminated with purulent exudate; segregation and observation of animals added to the production unit or returning to the unit from shows or exhibitions; use of sterile instruments for surgical pro-
cedures; shearing animals according to age and proper disinfection of shears between animals; and frequent changes in pasture locations when possible. Efforts di-
rected at controlling the opportunities for transmission by direct and indirect contact can be helpful in limiting

* Model 7010S, Waring Products Division, Dynamics Corp of America, Green-
wich, Conn.

<table>
<thead>
<tr>
<th>Fomite</th>
<th>Survival time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37 C</td>
</tr>
<tr>
<td>Surface coated</td>
<td></td>
</tr>
<tr>
<td>Plastic dish</td>
<td>1.125 0.18</td>
</tr>
<tr>
<td>White pine wood chip</td>
<td>2.125 0.18</td>
</tr>
<tr>
<td>Rusty nail</td>
<td>1.625 0.53</td>
</tr>
<tr>
<td>Mixed with homogenizer</td>
<td></td>
</tr>
<tr>
<td>Wheat straw</td>
<td>19.00 ±4.00</td>
</tr>
<tr>
<td>Caprine feces</td>
<td>10.00 ±2.65</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>7.00 ±3.61</td>
</tr>
<tr>
<td>White pine wood shavings</td>
<td>11.00 ±3.60</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD.
for example, loss of cells in an antibody positive test is suggestive of CLA in a production unit where the disease is a problem.

References

Contents

MICROBIOLOGY
Effect of induced prostatic infection on semen quality in the dog .. 709
J. A. Barsanti, A. B. Caudle, W. A. Crowell, E. B. Shotts, and J. Brown
Survival of Corynebacterium pseudotuberculosis in axenic purulent exudate on common barnyard fomites ... 713
John L. Augustine and Harland W. Renshaw
Pasteurella haemolytica leukotoxin: Physicochemical characteristics and susceptibility of leukotoxin to enzymatic treatment .. 716
Yung-Fu Chang, Harland W. Renshaw, and Alan B. Richards
Inoculation of lambs with ovine adenovirus 5 (Mastadenovirus ov1 5) strain RTS-42 724
Howard D. Lehmkuhl and Randall C. Cutlip
Incubation of Pasteurella haemolytica and Pasteurella lipopolysaccharide with sheep lung surfactant .. 727
K. A. Brogden, R. B. Rimler, R. C. Cutlip, and H. D. Lehmkuhl
Pasteurella multocida isolated from rabbits and swine: Serologic types and toxin production .. 730
Richard B. Rimler and Kim A. Brogden
Detection of antibody in rams with contagious epididymitis, using the enzyme-linked immunosorbent assay .. 738
A. Lucia Cardenas and Leroy R. Maki
Detection of bovine herpesvirus-specific nucleic acids by in situ hybridization with biotinylated DNA probes .. 740
Donna C. Dunn, Carol D. Blair, David C. Ward, and Barry J. Beatty
In vitro interference between equine herpesvirus types 1 and 2 .. 747
S. K. Dutta, A. C. Myrup, and S. R. Thaker
Effect of recombinant DNA-derived bovine and human interferons on replication of bovine herpesvirus-1, parainfluenza-3, and respiratory syncytial viruses .. 751
Robert W. Fulton, Lurinda J. Burge, and J. S. McCracken
Virion polypeptide specificity of immune complexes and antibodies in cats inoculated with feline infectious peritonitis virus .. 754
Marjan C. Horzinek, Joke Ederven, Herman Egberink, Helen E. L. Jacobse-Geels, Theo Nieuwold, and Jan Prins
Genetic stability in calves of a single strain of bluetongue virus .. 762
N. James MacLachlan and Frederick J. Fuller
Prevalence of feline leukemia virus infection among adult cats at an animal control center: Association of viremia with phenotype and season .. 765
John C. McMichael, Susan Stiers, and Susan Coffin
Enterotoxin activity of a Salmonella typhimurium of equine origin in vivo in rabbits and the effect of Salmonella culture lysates and choler toxin on equine colonic mucosa in vitro .. 769
Michael J. Murray
Seroepizootiology of types 3 and 7 adenoviruses and bovine viral diarrhea virus infections of beef cattle from birth to first parturition .. 774
E. H. Staubert, F. R. Abinanti, and G. D. Whitbeck
Experimentally induced rabies in four cats inoculated with a rabies virus isolated from a bat .. 777
Charles V. Trimarchi, Robert J. Rudd, and Melvin K. Abelseth